Dehydrogenation of Formic Acid over a Homogeneous Ru-TPPTS Catalyst: Unwanted CO Production and Its Successful Removal by PROX
نویسندگان
چکیده
منابع مشابه
A prolific catalyst for dehydrogenation of neat formic acid
Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. ...
متن کاملEfficient dehydrogenation of formic acid using an iron catalyst.
Hydrogen is one of the essential reactants in the chemical industry, though its generation from renewable sources and storage in a safe and reversible manner remain challenging. Formic acid (HCO(2)H or FA) is a promising source and storage material in this respect. Here, we present a highly active iron catalyst system for the liberation of H(2) from FA. Applying 0.005 mole percent of Fe(BF(4))(...
متن کاملHomogeneous Catalyst for Alkane Dehydrogenation
The removal of hydrogen from alkanes to give alkenes is an important commercial objective, as alkenes are widely used as organic feedstocks in industrial processes involving chemical synthesis and polymerisation. This reaction is, however, significantly endothermic, needing up to 30 kcal per mole, and normally occurring at temperatures exceeding 400°C in the presence of heterogeneous supported ...
متن کاملLewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
Formic acid (FA) is an attractive compound for H2 storage. Currently, the most active catalysts for FA dehydrogenation use precious metals. Here, we report a homogeneous iron catalyst that, when used with a Lewis acid (LA) co-catalyst, gives approximately 1,000,000 turnovers for FA dehydrogenation. To date, this is the highest turnover number reported for a first-row transition metal catalyst. ...
متن کاملOptimization of Preparation Factors for Cerium Oxide Synthesis as a Support for CO PrOx Catalyst
Nanocrystalline ceria has been considered as support for carbon monoxide preferentially oxidation. In this study ceria was prepared by precipitation method and the effects of preparation conditions, such as pH of solution (8-10), aging time (1-12 hr), drying temperature (80-120 °C), calcination time (2-6 hr) and temperature (400-600 °C) were investigated on ceria synthesized powders properties....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysts
سال: 2017
ISSN: 2073-4344
DOI: 10.3390/catal7110348